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This paper examines the impact of shear on the drainage of liquid through a foam. The effect on drainage of
changes in the Plateau border network brought about by shear is examined. This effect of shear was modeled
using both a detailed three-dimensional simulation of foam structure, and an idealized two-dimensional hex-
agonal foam. The main phenomenon that has been discovered is that shear induces an anisotropy in the
drainage of liquid through the foam. If the foam is strained and liquid flows under gravity either perpendicular
or parallel to the shear direction, a net liquid flow in the direction perpendicular to the direction of gravity is
induced. It was found that the degree of anisotropy increases nearly linearly with increasing strain until the
foam yields, after which the degree of flow anisotropy remains roughly constant. This is not a small effect, with
the flow in the direction perpendicular to gravity being up to about 20% of the flow in the direction of gravity
at the yield strain. This shear-induced anisotropy provides a potential explanation for the hitherto puzzling
phenomenon of the convective roll in foam. The other two effects examined are the effect of shear on the
length of Plateau borders per volume of foam, which increases as strain increases, and the resistance of the
foam to flow in the direction of gravity, which increases if the strain direction is perpendicular to gravity, but
decreases if the strain is parallel to gravity.
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I. INTRODUCTION

There have been both experimental �1� and theoretical
�2–4� studies of the rheological properties of foams, espe-
cially their elastic response to small applied strains. In par-
ticular, these studies have considered the impact of the foam
liquid fraction on the shear behavior. In turn, studies on the
effect of shear on the foam drainage �5,6� have focused on
shear dilatancy. In contrast, this paper will concentrate on the
effect of shear on foam drainage as a result of changes in the
foam structure.

This study simulates the liquid flow through individual
Plateau borders in foam. Unsheared foam results are similar
to those predicted by the continuum drainage equation �7,8�;
however, as the foam is sheared and the structure changes,
the drainage behavior deviates from that predicted by exist-
ing drainage theory. One of the major impacts of shear on
liquid drainage that will be demonstrated in this paper is that
the structural anisotropy generated by the shear results in a
drainage anisotropy. It will be shown that in a sheared foam
there is a substantial net liquid flow component in a direction
perpendicular to the gravitational driving force.

II. SIMULATION METHOD

All the three-dimensional �3D� foams simulated in this
work are random and monodispersed. The foams are also
assumed to have low liquid content. This means that the
structure can be simulated with the Plateau borders assumed
to be lines with no volume or surface area. The Plateau bor-
ders are also assumed to be small enough that gravitational
forces are negligible compared to surface forces. These as-
sumptions mean that the simulation of the structural changes
brought about by shear and the drainage can be carried out in
sequential steps, which greatly simplifies the calculations.

The three-dimensional simulations presented in this work
are the result of the simulation procedure that is outlined
below.

A. Generating the initial structure

A periodic random Voronoi tessellation was used as a
starting topology. Spatial placement restrictions on the points
used to generate the tessellation resulted in a practically
monodispersed volume distribution �Fig. 1�. In the subse-
quent surface minimization, the bubble volumes are adjusted
so as to produce a monodispersed foam structure.

A minimum surface area structure based on the topology
generated in the Voronoi tessellation was obtained using SUR-

FACE EVOLVER �9�. This is equivalent to a low liquid content
foam at equilibrium, since these systems are dominated by
surface forces. Topological rearrangements were carried out

FIG. 1. An example of a periodic three-dimensional Voronoi
tessellation used as a starting structure. This is not a minimum
surface area structure, but it is topologically similar to a foam.
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as film areas or Plateau border lengths became small.
In order to eliminate some of the trapped stresses and

reduce the structure to a lower-energy state, an annealing
procedure was used in which small compressional strains are
applied to each principal axis in turn �this procedure is simi-
lar to that used by Kraynik et al. �10��. Figure 2 shows a
typical foam structure obtained after the annealing process.

The simulated foam structures are fully periodic to avoid
edge effects and to allow relatively small numbers of
bubbles, either 125 or 216 in a periodic cell, to be used.
These simulated foam structures are the starting structure for
the shear simulations.

B. Shear simulations

Simple shear was simulated by distorting the periodic cell
in the x direction on the x-y plane. The shear is characterized
in terms of the strain �, the amount of deflection in the x
direction per distance in the y direction. Predictions for
drainage in different directions are achieved by changing the
direction of gravity.

The foam structure is assumed to be quasistatic, and for
each applied strain the surface area was minimized before
the liquid flow through the structure was calculated. Figure 3
gives an example of a sequence of sheared foam structures.
Note that the strain was increased in increments of 0.02 and
so the structures shown in Fig. 3 do not represent a compre-
hensive sequence.

C. Drainage calculations

The aim of this paper is to calculate the impact of shear-
induced changes in foam structure on the liquid drainage
through the foam. The drainage calculations will only con-
sider drainage along the Plateau borders, as they contain
most of the liquid in reasonably dry foams �11�.

SURFACE EVOLVER discretizes the foam structure and
therefore the extracted Plateau border network consists of
interconnected segments. An individual Plateau border con-
sists of many of these straight segments, allowing the curva-
ture of the Plateau borders to be approximated.

In each Plateau border segment the gravity, capillary suc-
tion, and viscous drag forces �7,8� balance. A force balance
yields an equation describing the volumetric flow rate in a
Plateau border, QPB, with a single dependent variable A, the
cross-sectional area of the Plateau border �Eq. �1��. The flow
rate QPB is a function of the distance along the Plateau bor-
der, l, the component of gravity along the Plateau border, g*,
the liquid density �, the surface tension �, and the viscosity
�. CPB is the Plateau border drag coefficient, which has a
value of approximately 50 for immobile interfaces �7� and a
lower value as the interfacial mobility increases:

QPB = k1A2 − k2
�A

dA

dl
,

k1 =
�g*

CPB�
,

k2 =
���3 − �/2

2CPB�
. �1�

The constant in k2 is a shape factor based on the cross-
sectional area of the Plateau border.

The periodic nature of the simulations means that the liq-
uid content does not vary at the scale of the unit cell. This
means that the liquid content in these simulations is macro-
scopically uniform. There is therefore no macroscopic
capillary-driven flow. If individual Plateau borders curve,
though, there can be local variations in the liquid content.
This is because a curving Plateau border will have a chang-
ing gravitational component along the Plateau border �i.e., k1
will be a function of l�. At steady state an individual Plateau
border must have the same liquid flow at all points along its
length and so the value of A changes as it curves.

If all the Plateau borders in a system with macroscopi-
cally uniform liquid content were straight and they met at the
tetrahedral angle at the vertices, then there would be no local
variations in A. This is an impossible condition to meet in a
3D foam. Typically, though, most of the internal Plateau bor-
ders in a foam have very little curvature �Figs. 2 and 3�. It
will therefore be assumed that the local variations in the
cross-sectional Plateau border area are small and do not have
a major impact on the drainage behavior of the foam. �See
Appendix A for a comparison between a detailed simulation
in which the local liquid content variations are accounted for
and the simplified calculations used in this work.� Note that
by dividing the Plateau borders up into segments, the curva-

FIG. 2. The monodispersed random and periodic foam structure
produced using the Voronoi tessellation in Fig. 1. This is a mini-
mum surface area structure and is thus both topologically and geo-
metrically representative of a foam structure.

FIG. 3. Evolution of the foam structure as strain is increased.

S. J. NEETHLING PHYSICAL REVIEW E 73, 061408 �2006�

061408-2



ture of the Plateau borders is still included in the calcula-
tions. It is only the variations in cross-sectional Plateau bor-
der area brought about by these curvatures that are ignored.
This means that Eq. �1� takes the following approximate
form if ĝ is a unit vector in the direction of gravity and li is
a vector along the Plateau border segment i ��li� is the length
of the segment�:

QPB,i �
�g

li · ĝ

�li�
CPB�

A2, �2�

where QPB,i is the volumetric flow rate in Plateau border
segment i and g is the gravitational acceleration.

Since the calculation of flow anisotropies is one of the
objectives of this paper, it is desirable that the average net
flux in directions not necessarily the same as gravity should

be calculated. For this purpose a unit vector f̂ in the direction
of flow being considered is defined.

In order to calculate the net flux in direction f̂ we need to

calculate the flux through a plane perpendicular to f̂. This
means that a Plateau border segment will contribute to the
flux only if it intersects the plane.

It is possible to improve the accuracy of the estimated flux

by integrating over all planes perpendicular to f̂. Since the

integration over all planes proceeds in the direction f̂, the
contribution of an individual Plateau border segment to this
averaged flux will be proportional to the component of the

segment length in the direction f̂ �i.e., li · f̂�. The integration
over a segment is simply the product of this projected length
and the flow rate, since this flow is constant along the length
of a segment. By summing the contributions of all the Pla-
teau border segments, the following equation for the average

flux in direction f̂ is obtained:

Fĝ,f̂ =
� QPB,ili · f̂

V
, �3�

where V is the volume of the region of interest, which ap-
pears as a result of the multiplication of the area over which
the flux is calculated �i.e., the area of the plane� multiplied

by the distance over which the planes contributing to the flux
are integrated.

By substituting Eq. �2� into Eq. �3�, the following expres-

sion for the average flux in the f̂ direction for gravity in the
ĝ direction is obtained:

Fĝ,f̂ �
�gA2

CPB�V �	 li · ĝ

�li�
li · f̂
 . �4�

While Eq. �4� can be used to calculate the average flux in any
direction with gravity in any direction, two particular direc-
tions are examined in detail in this paper, namely, parallel
and perpendicular to the shear direction. Since the shear is in
the x direction, this requires a unit vector in the x direction,
x̂, and one in the y direction, ŷ. The strain direction and the
various combinations of gravitational and flux components
being considered in this work are illustrated in Fig. 4.

If �xi, �yi, and �zi are the components of the Plateau
border segment i in the x, y, and z directions, respectively,
then

�xi = li · x̂, �yi = li · ŷ, �zi = li · ẑ . �5�

Equations �4� and �5� can be combined in order to give for-
mulas for the four combinations of gravitational and flux
component directions illustrated in Fig. 4 �note that shear is
always in the x direction�:

Fĝ=ŷ,f̂=ŷ � K � �li · ŷ�2

�li�
= K � �yi

2

��xi
2 + �yi

2 + �zi
2

, �6�

Fĝ=x̂,f̂=ŷ � Fĝ=ŷ,f̂=x̂ � K � �li · x̂��li · ŷ�
�li�

= K � �yi�xi

��xi
2 + �yi

2 + �zi
2

, �7�

Fĝ=x̂,f̂=x̂ � K � �li · x̂�2

�li�
= K � �xi

2

��xi
2 + �yi

2 + �zi
2

, �8�

where K= ��g /VCPB��A2.
Note that �xi, �yi, and �zi have signs, though it is imma-

terial which end of an individual Plateau border segment is
considered to be the beginning or the end. A potential con-

FIG. 4. The two drainage
cases being studied and the nota-
tion used to indicate the direction
of gravity and flux being consid-
ered. Note that the first subscript
to the flux indicates the direction
of gravity and the second the di-
rection of the flux being
considered.
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cern with this equation is that the calculated flux will change
if the structure is refined. The calculated flux does not
change with refinement �see Appendix B�, unless the surface
area of the structure is further minimized after refinement, in
which case there will be subtle changes in the calculated
flux.

The most relevant of these formulas for the purposes of
this paper is Eq. �7�, since it gives the value of the aniso-
tropic flux �that is, the flux in the direction perpendicular to
the applied gravitational driving force�. In an isotropic foam
structure, this flux would be expected to be zero. It can be
seen from Eq. �7� that Fĝ=x̂,k̂=ŷ=Fĝ=ŷ,k̂=x̂ not only for an iso-
tropic unsheared foam, but also for any sheared foam as well.
In fact, for any perpendicular pair of directions, the magni-
tude of the anisotropic flux will be the same whether gravity
is in one direction and the flux measured in the other direc-
tion, or vice versa.

In order to aid analysis a dimensionless relative flow an-
isotropy is introduced. This is the ratio of the flux in the
direction perpendicular to gravity to that parallel to gravity.

The relative anisotropy for gravity in the y direction
�gravity perpendicular to the shear direction� is

Fĝ=ŷ,f̂=x̂

Fĝ=ŷ,f̂=ŷ
�

� �li · x̂��li · ŷ�
�li�

� �li · ŷ�2

�li�

=

� �yi�xi

��xi
2 + �yi

2 + �zi
2

� �yi
2

��xi
2 + �yi

2 + �zi
2

.

�9�

The relative anisotropy for gravity in the x direction �gravity
parallel to the shear direction� is

Fĝ=x̂,f̂=ŷ

Fĝ=x̂,f̂=x̂
�

� �li · x̂��li · ŷ�
�li�

� �li · x̂�2

�li�

=

� �yi�xi

��xi
2 + �yi

2 + �zi
2

� �xi
2

��xi
2 + �yi

2 + �zi
2

.

�10�

Note that these relative flow anisotropies depend only on the
structure of the foam, since all the parameters relating to the
fluid properties cancel.

III. SHEAR-INDUCED FLOW ANISOTROPIES

A. Shearing a three-dimensional foam

In order to ascertain how the drainage responds to the
shear, Eqs. �9� and �10� have been applied to the Plateau
border networks extracted from a series of SURFACE

EVOLVER–based strain simulations �Sec. II B�. In Figs. 5 and
6 the ratio of the net flux perpendicular to gravity to that
parallel to gravity �the relative flow anisotropy� in a three-
dimensional foam is plotted as a function of the applied mac-
roscopic strain. For comparison, the solution for a sheared
two-dimensional hexagonal foam �hexagonal formula� is
also given �see Sec. III B�.

The drainage behavior is similar whether gravity is per-
pendicular to the shear �Fig. 5�, or in the same direction as
the shear �Fig. 6�. In both cases there is an initial increase in
the relative anisotropy up to a strain of about 0.4–0.5 after
which the ratio remains reasonably constant, albeit with
some fluctuations �the fluctuations are due to the finite size
of the simulated samples�. The point at which this transition
occurs corresponds to the yield strain of the foam.

FIG. 5. Relative flow anisotropy for gravity in the y direction �shear in the x direction� as a function of strain. Legend indicates number
of bubbles in the periodic cell.
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The difference between these curves is not due to differ-
ences in the magnitudes of the anisotropic fluxes, which are
identical �Eq. �7��, but is rather because the shear also has an
impact on the flow parallel to gravity �see Sec. IV B�.

It should be noted that this flow anisotropy is potentially
quite a large effect. At the yield strain, the net flux in the
direction perpendicular to gravity is of the order of 15–20 %
of the flux parallel to gravity.

The flow anisotropy in the direction perpendicular to the
shear plane �the z direction� is not shown since, as expected,
shear has no real impact on this flow. The flow in the z
direction for gravity in either the x or y direction is never
more than 1% of the gravity-driven flow and there is no
systematic change with strain, only slight fluctuations
brought about by topological changes within the structure.
The only reason the z direction anisotropy is not exactly zero
is because the initial structures are finite in size and not per-
fectly isotropic. There cannot be a preferential direction for
shear-induced flow perpendicular to shear plane since mirror-
ing the structure in this direction does not change the sign of
the strain, while mirroring the structure in either of the other
directions does change the sign of the strain.

B. Shearing a hexagonal foam

A hexagonal two-dimensional foam allows simple rela-
tionships for the degree of anisotropy to be derived, which
can be compared to the results from the full three-
dimensional simulations.

In a regular hexagonal foam, drainage calculations can be
performed using a unit cell of half of three films �Fig. 7�.

Only half the parallelogram connecting the centers of four
hexagons need be considered, since the identical films are
repeated in each half of the parallelogram, albeit in a differ-
ent order �Eqs. �6�–�10� are not dependent on the actual lay-
out of the films, only the components of the lengths in each
direction�.

The vertex where the edges meet is the Steiner point of
the triangle. The Steiner point coordinate is a function of the
macroscopic strain � and the triangle width l �12�. If the
origin for these coordinates is the midpoint of the triangle
base, then the Steiner point is

xS =
l�

�3�	�

2

2

+ 1� ,

yS =
2l

�3�	�

2

2

+ 1� −
�3

2
l , �11�

The lengths of the x and y components of the three relevant
edge segments are as follows:

�x1 =
l

2
+ xS, �y1 = ys

�x2 =
l

2
− xS, �y2 = − ys

FIG. 6. Relative flow anisotropy for gravity in the x direction �shear in the x direction� as a function of strain. Legend indicates number
of bubbles in the periodic cell.
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�x3 =
�3

2
l� − xS, �y3 =

�3

2
l − ys. �12�

In order to use these equations to calculate fluxes, the
valid ranges for the relevant variables need to be defined.
First, the triangle side length must be positive �l�0�. Sec-
ond, the strain must be less than the strain at which a topo-
logical change will occur. This happens when one of the
edge lengths becomes zero. As the strain increases, the edge
that shrinks is edge 2. This edge disappears when ys=0,
which means that the valid range for strain is

��� �
2
�3

. �13�

Using Eqs. �6�–�8�, together with Eqs. �11� and �12� above
and noting the valid ranges for the variables, the following
relationships are obtained:

Fĝ=ŷ,f̂=ŷ = K
�3l

2�	�

2

2

+ 1

, �14�

Fĝ=x̂,f̂=ŷ = Fĝ=ŷ,f̂=x̂ = K
�3l�

4�	�

2

2

+ 1

, �15�

Fĝ=x̂,f̂=x̂ = K
�3l��2 + 2�

4�	�

2

2

+ 1

. �16�

When the above equations are combined to give the relative
flow anisotropies in a 2D hexagonal foam, quite simple ex-
pressions are obtained. The relative anisotropy for gravity in
the y direction is given by

Fĝ=ŷ,f̂=x̂

Fĝ=ŷ,f̂=ŷ
=

�

2
, �17�

and the relative anisotropy for gravity in the x direction is

Fĝ=x̂,f̂=ŷ

Fĝ=x̂,f̂=x̂
=

�

2�	�

2

2

+ 1� . �18�

The above equations show that in a hexagonal foam the rela-
tive flow anisotropy increases linearly if the strain is perpen-
dicular to gravity. For gravity parallel to the strain direction,
the relationship is nearly linear at low strains, but progres-
sively deviates from linearity as the strain increases.

From Figs. 5 and 6 it can be seen that below the yield
strain the relative flow anisotropy for the three-dimensional
foam is predicted quite well by the hexagonal formulas. This
is to be expected, since even in a three-dimensional foam,
the shearing is an essentially two-dimensional effect, since it
does not result in much movement of the Plateau borders in
the direction perpendicular to the shear plane �the z direction
in these simulations�.

FIG. 7. A sheared hexagonal
foam showing the periodic cell
used for calculations. The num-
bers in the circles refer to the edge
numbers in Eq. �12�.
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While Eqs. �17� and �18� provide quite good approxima-
tions for the behavior of the three-dimensional foam below
the yield strain, there is a progressive overprediction of the
relative flow anisotropy as the strain increases �Figs. 5 and
6�. Since the three-dimensional foams are disordered, topo-
logical changes can occur at strains much lower than the
yield strain. These topological changes release stress and
thus allow the apparent local strain to be less than the applied
macroscopic strain experienced by the foam. The relative
anisotropy is therefore reduced to below what might be ex-
pected in the absence of topological changes.

C. Flow at other angles

Thus far this paper has concentrated on the effect of shear
on drainage in which the direction of gravity is either parallel
or perpendicular to the shear direction. It has been shown
that the effect of shear on the degree of flow anisotropy was
largely the same whether the flow was parallel or perpen-
dicular to the shear direction.

In this section, the effect of shear will be examined for
gravity at other angles. Gravity will be set at an angle of 	,
from the vertical �unit vector r̂�, while two flow directions
will be considered, one parallel to gravity �unit vector r̂� and
one perpendicular to gravity �unit vector r̂�, 90° clockwise
from r̂�. The net fluxes in the two relevant flow directions
can be written as follows �from Eq. �4��. For flow parallel to
gravity,

Fĝ=r̂,f̂=r̂ �
�gA2

CPB�V �	�li · r̂�2

�li�

 , �19�

and for flow perpendicular to gravity,

Fĝ=r̂,f̂=r̂�
�

�gA2

CPB�V �	 li · r̂

�li�
li · r̂�
 . �20�

This can be expanded and written according to already in-
vestigated relationships by noting that r̂= x̂ sin 	+ ŷ cos 	
and r̂�= x̂ cos 	− ŷ sin 	:

Fĝ=r̂,f̂=r̂ =
�gA2

CPB�V �	sin2 	
�li · x̂�2

�li�

+ 2 sin 	 cos 	
�li · x̂��li · ŷ�

�li�
+ cos2 	

�li · ŷ�2

�li�



= sin2 	 Fĝ=x̂,f̂=x̂ + 2 sin 	 cos 	 Fĝ=x̂,f̂=ŷ

+ cos2 	 Fĝ=ŷ,f̂=ŷ, �21�

Fĝ=r̂,f̂=r̂�
=

�gA2

CPB�V �	sin 	 cos 	
�li · x̂�2

�li�
+ �2 cos2 	

− 1�
�li · x̂��li · ŷ�

�li�
− sin 	 cos 	

�li · ŷ�2

�li�



= sin 	 cos 	 Fĝ=x̂,f̂=x̂ + �2 cos2 	 − 1�Fĝ=x̂,f̂=ŷ

− sin 	 cos 	 Fĝ=ŷ,f̂=ŷ. �22�

The relative anisotropy can be calculated using Eqs. �21� and
�22�:

Fĝ=r̂,f̂=r̂�

Fĝ=r̂,f̂=r̂
=

tan 		Fĝ=x̂,f̂=x̂

Fĝ=ŷ,f̂=ŷ
− 1
 + �1 − tan2 	�

Fĝ=x̂,f̂=ŷ

Fĝ=ŷ,f̂=ŷ

tan2 	
Fĝ=x̂,f̂=x̂

Fĝ=ŷ,f̂=ŷ
+ 2 tan 	

Fĝ=x̂,f̂=ŷ

Fĝ=ŷ,f̂=ŷ
+ 1

.

�23�

By combining Eq. �23� with Eqs. �14�–�16� the relative flow
anisotropy for a hexagonal foam in which gravity is at an
angle 	 from the vertical can be written as

Fĝ=r̂,f̂=r̂�

Fĝ=r̂,f̂=r̂
=

tan 	 �2 + �1 − tan2 	��
tan2 	��2 + 2� + 2 tan 	 � + 2

�24�

At small strains Eq. �24� can be further simplified:

Fĝ=r̂,f̂=r̂�

Fĝ=r̂,f̂=r̂
�

�1 − tan2 	�
�1 + tan2 	�

�

2
. �25�

This equation implies that, at least at small strains, the high-
est magnitude for the relative anisotropy occurs at angles of
0° and 90°, which correspond to the two situations that have
been examined in the previous sections of this paper. For
gravity at 45° to the shear direction there is no flow aniso-
tropy.

IV. OTHER EFFECTS OF SHEAR ON DRAINAGE

A. Length � of Plateau borders per volume of foam

In addition to flow anisotropy, shear has other impacts on
the drainage behavior. The first is the change in the length of
the Plateau borders per volume of foam, 
, which affects
proportionally both the foam liquid content and the volumet-
ric flow rate through the foam. If Aav is the average cross-
sectional Plateau border area, then the following relation-
ships holds for average liquid content �:

� = 
Aav. �26�

The length of Plateau borders per volume, 
, is a purely
geometric quantity and can be obtained from the following
equation:


 =
� �li�

V
=

� ��xi
2 + �yi

2 + �zi
2

V
. �27�

In this work, the Plateau border length per volume is nondi-
mensionalized by dividing by the value for an unsheared
foam, 
0. From Fig. 8 it can be seen that shear increases the
total Plateau border length; however, the dependency is weak
�in the three-dimensional foam it is a maximum of about a
1% increase� and therefore has only a very minor effect on
the drainage.

The two-dimensional equivalent of the length of Plateau
borders per volume is the length of edges per area, 
2D. This
can be calculated analytically using Eqs. �11�, �12�, and �27�:
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2D


0,2D
=�	�

2

2

+ 1. �28�

B. Ratio m of the average actual velocity to the macroscopic
velocity

If, for instance, gravity is assumed to be in the y direction,
then the following macroscopic drainage equation holds
�7,8�:

Fĝ=ŷ,f̂=ŷ = 
Aav	 �g

mCPB�
Aav −

���3 − �/2

2mCPB

1
�Aav

dAav

dy

 .

�29�

The term in parentheses is the average macroscopic liquid
velocity. The factor m is the ratio of the average instanta-
neous liquid velocity to the macroscopic velocity or, stated
differently, how much longer the liquid takes to travel
through the tortuous Plateau border network than it would
through a vertical Plateau border. The parameter m is usually
assigned a value of 3, which is obtained by assuming that the
orientations of the Plateau borders are random �11�.

In these drainage calculations there are assumed to be no
macroscopic gradients in Plateau border area. This means
that the capillary term in Eq. �29� can be ignored:

mĝ=ŷ = 
Aave
2 �g

Fĝ=ŷ,k̂=ŷCPB�
. �30�

By making the same assumptions as were used to obtain
Eqs. �4�–�10�, the following equation for m can be derived
�note that the flow direction of interest is the same as the

direction of gravity, f̂= ĝ�:

mĝ �
� �li�

� �li · ĝ�2

�li�

. �31�

For instance, for gravity in the y direction:

mĝ=ŷ �
� ��xi

2 + �yi
2 + �zi

2

� �yi
2

��xi
2 + �yi

2 + �zi
2

. �32�

Figure 9 shows the effect of shear on the value of m for
flow both parallel and perpendicular to the direction of shear.
It can be seen from this figure that shear decreases the aver-
age drainage path length in the direction of shear and in-
creases it perpendicular to shear. The reason for this is that
shear lengthens Plateau borders that are close to the direction
of shear and shrinks those that are close to perpendicular to
shear �e.g., Fig. 7�. This means that for drainage in the di-
rection of shear, a given element of fluid will have more of
its path through the foam consisting of near-vertical fast-
flowing Plateau borders than the now shorter more horizontal
Plateau borders, and vice versa for drainage perpendicular to
the shear.

As with the relative degree of anisotropy, relatively
simple relationships can be obtained based on two-
dimensional hexagonal foams �from Eqs. �11�, �12�, and
�32��:

mĝ=ŷ

m0
= 	�

2

2

+ 1, �33�

FIG. 8. The effect of shear on the length of the Plateau borders per volume of foam.
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mĝ=x̂

m0
=
	�

2

2

+ 1

�2

2
+ 1

. �34�

The agreement between these equations for hexagonal foams
and the full three-dimensional simulations can be seen in
Fig. 9.

V. THE CONVECTIVE ROLL

A. What is the convective roll in foams?

A standard experiment for investigating the drainage be-
havior of foams is forced drainage. In these experiments a
foam is created in a column and allowed to drain. Once the
foam is reasonably dry, a constant flow rate of liquid is added
into the top of the foam. The relationship between the speed
of the wetting front and the liquid flow rate being added is an
important indicator of the drainage processes occurring
�7,11�. What has been found, though, is that when the flow
rate exceeds a certain critical value, the foam bed no longer
remains stationary, but begins to undergo a convective roll
�13–15�.

What was puzzling is that the onset of the convective roll
requires a nonuniform horizontal liquid content in order to
generate a strained and ultimately yielding foam. Conven-
tional drainage theory predicts that any horizontal variation
in the liquid content should rapidly be smoothed out by cap-
illary suction. One possible explanation that has been pro-
posed is dilatancy �5,6�, but while this effect may play a role,
no theory based solely on this phenomenon has been able to
successfully predict the convective roll.

The reason why the shear-induced flow anisotropy is a
possible cause is because it magnifies the effect of slight
variations in the horizontal liquid content. A variation in the
liquid content causes a local straining of the foam; this
straining will result in the flow anisotropy outlined above,
which will cause liquid to flow toward the area in which
there was already a slight increase in liquid content, causing
the fluctuation to grow. If the effect of the flow anisotropy is
greater than the restoring ability of capillary suction, then the
instability will grow until the foam yields and begins to un-
dergo a convective roll.

B. Predicting the onset of the convective roll

Using the relationships for the anisotropic flux together
with existing theory on the response of a foam to an applied
strain, a relationship for the liquid content at which the onset
of the convective roll will occur can be obtained.

The degree of the relative anisotropy is related to the
strain on the foam �from Eq. �18�, assuming strain is low,
where Fa is the induced flux in the horizontal direction, Fg is
the vertical gravity-driven flow, and � is the applied strain�:

Fa �
Fg

2
� . �35�

In the forced drainage experiments, the stress on the foam is
caused by horizontal variations in the liquid content �. Hori-
zontal variations in liquid content mean variations in the
gravitational force exerted on the foam and thus a shear
stress. At equilibrium, the shear stress � can be written as a
function of gradients in the liquid content:

FIG. 9. m /m0 as a function of strain showing both the three-dimensional simulations and the results from the hexagonal foam. m0 has a
value of 3 for three-dimensional foams and 2 for two-dimensional foams �shear in the x direction�.
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� = �g
d�

dx
. �36�

The strain on the foam is related to the shear stress by means
of the elastic modulus G:

� =
�

G
. �37�

Below their yield stress foams act as elastic solids. This is
because strain increases the surface area and, therefore, sur-
face energy of the system. The behavior is elastic at small
strains, since the foam will return to its original state if there
have been no �or very few� topological changes. At higher
liquid content the individual bubbles are less deformed for a
given strain and so the elastic modulus decreases with in-
creasing liquid content. The elastic modulus is therefore a
function of the bubble radius rb, the liquid content, surface
tension �, as well as the critical liquid content at which the
foam loses rigidity, �R �11�:

G =
kG�

rb
	�R − �

�R



. �38�

In this relationship kG is of the order of unity, while 0.5
��0.7 �11�. kG is a structural parameter that is related to
the rate of film stretching with increasing strain. It does not
depend on any of the surfactant or fluid properties, but is
likely to be slightly dependent on the polydispersity of the
foam. Above a critical strain, large numbers of topological
changes occur and the foam deforms irreversibly. The value
of this yield strain will influence the liquid content gradient
at the point at which the foam yields at the onset of the
convective roll, but this simple theory suggests that it does
not have a significant influence on whether the convective
instability occurs or not.

The other two liquid fluxes to note are the vertical
gravity-driven flux Fg �capillary gradients in the vertical di-
rection are ignored� and the horizontal flux caused by capil-
lary suction, Fc. Both these fluxes can be written as a func-
tion of the liquid content � �from Eq. �29�, noting that �
=
A�, where CPB is the Plateau border drag coefficient, � is
the liquid viscosity, and 
 is the length of Plateau borders per
volume of foam �
=k
rb

−2, where k
�2.6 for a random
monodispersed foam �10��:

Fg �
�g

3CPB�

�



, �39�

Fc � −
��3 − �/2�

6CPB�
��




d�

dx
. �40�

By combining Eqs. �35�–�39�, the horizontal flux due to the
flow anisotropy can be written as a function of �:

Fa �
��g�2

6CPB�

rb

kG�
	 �R

�R − �

�2




d�

dx
. �41�

For gravity in the same direction as the strain �as is the case
here�, the anisotropic flux is in the direction of the increase
in the foam deflection. This means that the anisotropic flux is

in the direction of increasing liquid content. The capillary
suction, on the other hand, occurs in the direction down the
gradient of liquid content. This means that these two effects
oppose one another.

Since the anisotropic flux and the capillary flux are both
linearly dependent on the gradient of liquid content, below a
critical value of �, Fc has a larger magnitude than Fa irre-
spective of the size of the fluctuation in �. This means that
below this critical liquid content, any fluctuations in liquid
content will be smoothed out by capillary suction. Above this
critical value, though, any fluctuation will grow until the
foam yields and the convective roll begins. The critical liquid
content �C above which instabilities will grow and the con-
vective roll begins is thus the point at which Fc+Fa=0 �note
that the relationship is implicit in terms of �C�:

�C = �kg
2k
	�3 −

�

2

�1/3	 �

�g

4/3	�R − �C

�R

2/3

rb
−4/3.

�42�

C. Comparison of the predicted onset with experimental
values

Assuming that the liquid in the Plateau borders has physi-
cal properties similar to those of water and �R and  have
values of 0.25 and 0.5, respectively, then the relationship
between �C and rb can be obtained by solving Eq. �42� nu-
merically �Fig. 10�. The critical liquid content does not
change as rapidly as the exponent in the power on the bubble
radius in Eq. �42� might suggest, since the relationship is
tempered by the fact that the elastic strength of the foam
decreases as the liquid content increases.

While the shape of the curve in Fig. 10 is qualitatively
similar to the relationship obtained experimentally by Weaire
et al. �15� �Fig. 11�, the predicted critical liquid content for a
given bubble size is too low. The bubble sizes that corre-
spond to a given critical liquid content are about an order of
magnitude too small �the scale in both graphs is the inverse
of the bubble size�.

Since the critical liquid content is underpredicted, this im-
plies that the relative flow anisotropy is too large, the elastic
modulus is too small, or the predicted capillary suction is too
small. One possible source of the discrepancy is that the
liquid content is assumed to be low in the modeling of the
flow anisotropy, while the liquid contents in the experimental
data are all quite high. It is already known that the liquid
content has an impact on the response of a foam structure to
shear �Eq. �38� implies that the interfaces do not deform to
the same extent for a given strain as the liquid content in-
creases�. It is therefore reasonable to suppose that the rela-
tionship between the relative flow anisotropy and strain will
also be a function of liquid content.

A second assumption that may be incorrect and requires
investigation is that the foam has the same elastic modulus
when the stress is applied by means of internal liquid content
variations �as is the case here� as it does when the stress is
applied externally �Eq. �38� was obtained for foams with
external forces applied to them�. Liquid drainage applies
stresses to the walls of the Plateau borders, which will result
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in the foam structure deviating from Plateau’s rules for the
angles at which films meet, since forces other than surface
tension will be influencing the structure. That drainage can
cause a foam structure to deviate from Plateau’s rules has
already been observed experimentally �11�. This difference
in the way the foam deforms could mean a different relation-
ship for the elastic modulus for internally stressed foams.

VI. CONCLUSIONS AND FUTURE WORK

This paper has shown that shear has a large impact on the
drainage behavior of foams. The biggest impact of shear is
that it causes the drainage to become anisotropic. This effect
is a significant one, with flows being induced in the direction
perpendicular to gravity that are up to about 20% of the

FIG. 10. The critical liquid fraction for the onset of the convective roll as a function of the inverse of the bubble size as predicted from
Eq. �42�.

FIG. 11. Experimental relationship between the liquid content at the onset of the convective roll and the inverse of the bubble size �from
Weaire et al. �15��. Note that the line in this figure is not a theoretical one but is simply a guide for the eye.
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primary gravity-driven flow at the point at which the foam
yields.

A secondary phenomenon that has been noted is the effect
of shear on the resistance of the foam to drainage, with the
resistance decreasing with increasing strain for flow parallel
to the strain direction, but increasing for flow perpendicular
to the strain direction.

The flow anisotropy also provides a possible explanation
for the convective roll sometimes seen in forced drainage
experiments. A simple theory based on this phenomenon pre-
dicts the correct trend for the onset of the convective roll, but
it underpredicts the critical liquid content at which it occurs.
This means that the simple theory is either overpredicting the
flow anisotropy, or underpredicting either the elastic modulus
of the foam or the capillary suction.

The two main effects that will need to be investigated in
future work will be the influence of liquid content and the
polydispersity of the bubbles on the flow anisotropy. These
are important since real foam systems are typically polydis-
persed and the liquid content at which the convective roll
usually occurs is high enough that low-liquid-content as-
sumptions become suspect. The main influence that polydis-
persity is likely to have is that the onset of topological
changes will occur at smaller strains and there will be a
greater range of strains over which topological changes will
occur. This is because the average film size decreases and the
range of film sizes increase as polydispersity increases �16�.
The yield strain will also decreases with increasing polydis-
persity. This means that the increase in the flow anisotropy
with strain is likely to be lower than that in a monodispersed
system and also less linear. The ultimate flow anisotropy as
the foam yields is also likely to be lower due to the decrease
in the yield strain.

APPENDIX A: EFFECT OF INCLUDING LOCAL LIQUID
CONTENT VARIATIONS

It is possible to solve for the drainage within individual
Plateau border segments within the foam �using Eq. �1��. The
method involves iteratively improving the volume balance
for flows into and out of vertices by locally varying the Pla-
teau border areas until convergence is obtained. The full de-
tails of this simulation method are beyond the scope of this
paper, but the results of these calculations are all the flows
within a foam in which the liquid content is macroscopically
uniform, but in which the local variations in liquid content
are accounted for. Figure 12 gives a comparison between the
results from this-time consuming and complex calculation
and the simplified calculation from Eqs. �9� and �10�. The
full drainage calculation was based on a typical aqueous soap
foam ��=0.001 Pa s, �=1000 kg/m3, and �=0.04 N/m�,
with a bubble size of 2 cm and a liquid content of about
0.15%. The close agreement between these results indicates
that the assumption of constant Plateau border area does not
have a large impact on the results obtained.

APPENDIX B: PROOF THAT REFINING THE STRUCTURE
DOES NOT INFLUENCE THE PREDICTED

DRAINAGE

This Appendix will show that subdividing the edges has
no impact on the results from Eqs. �6�–�8�. Assume that an
edge has a length l, and components �x and �y. Using Eq.
�7� on this single edge we have

FIG. 12. A comparison between the full drainage simulation and the approximation given by Eqs. �9� and �10� for the relative flow
anisotropy �the two lines are Fĝ=ŷ,f̂=x̂ /Fĝ=ŷ,f̂=ŷ and Fĝ=x̂,f̂=ŷ /Fĝ=x̂,f̂=x̂�.
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Fĝ=x̂,f̂=ŷ = K
�x�y

l
where K =

�g

VCPB�
A2. �B1�

If this edge is subdivided into two pieces labeled 1 and 2 and
Eq. �5� is again used to calculate the average flux, we get

Fĝ=x̂,f̂=ŷ = K	�x1�y1

l1
+

�x2�y2

l2

 . �B2�

Since the edge is simply being subdivided, the slopes of the
new pieces will be the same as that of the original edge:

�x1

l1
=

�x2

l2
=

�x

l
. �B3�

This means that, from Eqs. �B2� and �B3�,

Fĝ=x̂,f̂=ŷ = K
�x

l
��y1 + �y2� . �B4�

�y1+�y2=�y, since each of the new edges is a subsection of
the old edge. This means that further subdivision of the
edges has no impact on the answer obtained.
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